Tumor vessels are characterized by abnormal morphology and hyperpermeability that together cause inefficient delivery of chemotherapeutic agents. Although vascular endothelial growth factor has been established as a critical regulator of tumor…
Cardiac fibrosis caused by adverse cardiac remodeling following myocardial infarction can eventually lead to heart failure. Although the role of soluble factors such as TGF-beta is well studied in cardiac fibrosis following myocardial injury, the…
Transient receptor potential vanilloid channel 4 (TRPV4) is a polymodally activated nonselective cationic channel implicated in the regulation of vasodilation and hypertension. We and others have recently shown that cyclic stretch and shear stress…
The phenotypic switch underlying the differentiation of cardiac fibroblasts into hypersecretory myofibroblasts is critical for cardiac remodeling following myocardial infarction. Myofibroblasts facilitate wound repair in the myocardium by secreting…
Nuclear receptors farnesoid X receptor (FXR) and small heterodimer partner (SHP) are important regulators of bile acid, lipid, and glucose homeostasis. Here, we show that global Fxr (-/-) Shp(-/-) double knockout (DKO) mice are refractory to weight…
Asthma is characterized by pathological airway remodeling resulting from persistent myofibroblast activation. Although transforming growth factor beta 1 (TGFβ1), mechanical signals, and reactive oxygen species (ROS) are implicated in fibroblast…
Cardiovascular disease is the leading cause of worldwide mortality. Intravital microscopy has provided unprecedented insight into leukocyte biology by enabling the visualization of dynamic responses within living organ systems at the cell-scale. The…
Persistent infection with oncogenic human papillomaviruses (HPVs) is the most important factor in the induction of uterine cervical cancer, a leading cause of cancer mortality in women worldwide. Upon cell transformation, continual expression of the…
Background Bile acid‐CoA: amino acid N‐acyltransferase (BAAT) is the enzyme which is responsible for bile acid (BA) conjugation with glycine and taurine in the final step of bile acid synthesis in humans. More than 98% of BA conjugation occurs in the…
Objective: To describe clinical, biochemical, and genetic features of participants with mitochondrial diseases (MtDs) enrolled in the North American Mitochondrial Disease Consortium (NAMDC) Registry. Methods: This cross-sectional, multicenter,…
Nonalcoholic fatty liver disease (NAFLD) is often characterized by accumulation of lipids in the liver. It presents a pathological spectrum of changes from simple steatosis to steatohepatitis. It is also often associated with obesity and insulin…
Pyruvate dehydrogenase complex deficiencies (PDCDs) and other mitochondrial disorders (MtDs) can (a) result in congenital lactic acidosis with elevations of blood alanine (Ala) and proline (Pro), (b) lead to decreased ATP production, and (c) …
BACKGROUND: Augmentation of tissue blood flow by therapeutic ultrasound is thought to rely on convective shear. Microbubble contrast agents that undergo ultrasound-mediated cavitation markedly amplify these effects. We hypothesized that purinergic…
Cardiac fibroblasts and myofibroblasts are responsible for post-MI remodeling which occurs via regulation of extracellular matrix (ECM). Accelerated post-MI remodeling leads to excessive ECM deposition and fibrosis, contributing to impaired…
The purpose of this review is to briefly summarize the roles of alcohol (ethanol) and related compounds in promoting cancer and inflammatory injury in many tissues. Long-term chronic heavy alcohol exposure is known to increase the chances of…
Transient receptor potential vanilloid 4 (TRPV4) channels are mechanosensitive ion channels that regulate systemic endothelial cell (EC) functions such as vasodilation, permeability, and angiogenesis. TRPV4 is expressed in retinal ganglion cells,…
The transient receptor potential vanilloid 4 (TRPV4) channel is a mechanosensor in endothelial cells (EC) that regulates cyclic strain-induced reorientation and flow-mediated nitric oxide production. We have recently demonstrated that TRPV4…
The ability of retroviruses (RVs) to cause neurodegeneration is critically dependent upon two activities of the envelope protein (Env). First, Env facilitates viral genome delivery to CNS target cells through receptor binding and membrane fusion.…
Introduction Takotsubo syndrome (TTS), also known as the “Broken Heart Syndrome” or “Apical Ballooning Syndrome is defined by its characteristic anomaly: when the heart contracts during systole, the apex of the heart dilates as the base of the heart…
Hyperleptinemia, characteristic of diabetes and a hallmark feature of human obesity, contributes to the increased risk of atherosclerotic complications. However, molecular mechanisms mediating leptin-induced atherogenesis and gene expression in…
The expression of the rat cytochrome P450 CYP4 family was studied in hepatic tumors. In most of the primary and transplantable hepatic tumors studied, lauric acid omega-hydroxylase activity associated with the CYP4A subfamily enzymes decreased. The…
Hydrophobic bile acids strongly repressed transcription of the human cholesterol 7alpha-hydroxylase gene (CYP7A1) in the bile acid biosynthetic pathway in the liver. Farnesoid X receptor (FXR) repressed CYP7A1/Luc reporter activity in a transfection…
Mitochondrial sterol 27-hydroxylase (CYP27A1) catalyses sterol side-chain oxidation of bile acid synthesis from cholesterol, and the first reaction of the acidic bile acid biosynthetic pathway. Hydrophobic bile acids suppress human CYP27A1 gene…
Background A serious consequence of acute myocardial ischemia‐reperfusion injury (acute I/R) is oxidative damage which causes mitochondrial dysfunction. Such I/R‐induced mitochondrial dysfunction is observed as impaired state‐3 respiration and…
Mitochondrial reactive oxygen species (ROS) have emerged as an important mechanism of disease and redox signaling in the cardiovascular system. Under basal or pathological conditions, electron leakage for ROS production is primarily mediated by the…
Bile acids are important physiological agents required for disposal of cholesterol and absorption of vitamins and fats. Bile acids are synthesized from cholesterol in the liver. Enterohepatic circulation of bile acids is very efficient and plays an…
The cholesterol 7alpha-hydroxylase gene (CYP7A1) plays an important role in regulation of bile acid biosynthesis and cholesterol homeostasis. Oxysterol receptor, LXR, stimulates, whereas the bile acid receptor, FXR, inhibits CYP7A1 transcription. The…
Cholesterol 7alpha-hydroxylase gene (CYP7A1) transcription is repressed by bile acids. The goal of this study is to elucidate the mechanism of CYP7A1 transcription by bile acid-activated farnesoid X receptor (FXR) in its native promoter and cellular…
Two cholesterol 7 alpha-hydroxylase isozymes were purified from liver microsomes of cholestyramine-treated female rats by using anion exchange high performance liquid chromatography. These two cytochrome P-450 isozymes were similar in electrophoretic…
Nucleotide sequences of a 7997-base pair SacI fragment spanning 3643 base pairs of the upstream promoter region to exon 4 of the rat cholesterol 7 alpha-hydroxylase gene (CYP7) have been determined. DNase I footprinting and electrophoretic mobility…
A cholesterol 7 alpha-hydroxylase gene containing 8 kb of the 5'-flanking region and 5 kb of the transcription region which covers exons 1 to 5 was isolated from a rat genomic library. The 2015 bp nucleotide sequence 5'-upstream from the start codon…
Bile acids are important physiological agents for intestinal nutrient absorption and biliary secretion of lipids, toxic metabolites, and xenobiotics. Bile acids also are signaling molecules and metabolic regulators that activate nuclear receptors and…
This commentary highlights the article by Jena et al that studied the complex interplay between diet, bile acids, sex, and dysbiosis in hepatic steatosis and inflammation.