Browse Items (37 total)

Ischemic heart disease is still the leading cause of death even with the advancement of pharmaceutical therapies and surgical procedures. Early vascularization in the ischemic heart is critical for a better outcome. Although stem cell therapy has…

Ischemic heart diseases (IHD) cause millions of deaths around the world annually. While surgical and pharmacological interventions are commonly used to treat patients with IHD, their efficacy varies from patient to patient and is limited by the…

The coronary collateral circulation is critically important as an adaptation of the heart to prevent the damage from ischemic insults. In their native state, collaterals in the heart would be classified as part of the microcirculation, existing as…

Induced vascular progenitor cells (iVPCs) were created as an ideal cell type for regenerative medicine and have been reported to positively promote collateral blood flow and improve cardiac function in a rat model of myocardial ischemia. Exosomes…

UNLABELLED: Activation of farnesoid X receptor (FXR) markedly attenuates development of atherosclerosis in animal models. However, the underlying mechanism is not well elucidated. Here, we show that the FXR agonist, obeticholic acid (OCA), increases…

Atherosclerotic cardiovascular disease is a leading cause of death in the western world. Increased plasma triglyceride and cholesterol levels are major risk factors for this disease. Carboxylesterase 1 (Ces1/Ces1g) has been shown to play a role in…

Hepatocyte nuclear factor 4α (HNF4α) is highly enriched in the liver, but its role in the progression of liver steatosis (NAFL) to non-alcoholic steatohepatitis (NASH) has not been elucidated. In this study, we investigated the effect of gain or…

Rodents have at least five carboxylesterase 1 (Ces1) genes, whereas there is only one CES1 gene in humans, raising the question as to whether human CES1 and mouse Ces1 genes share the same functions. In this study, we investigate the role of human…

Hepatocytes are the major source of hepatic lipocalin‐2 (LCN2), which is up‐regulated in response to inflammation, injury, or metabolic stress. So far, the role of hepatocyte‐derived LCN2 in the development of nonalcoholic fatty liver disease (NAFLD)…

Macrophages play a crucial role in the pathogenesis of atherosclerosis, but the molecular mechanisms remain poorly understood. Here we show that microRNA-34a (miR-34a) is a key regulator of macrophage cholesterol efflux and reverse cholesterol…

OBJECTIVES: Activation of the bile acid (BA) receptors farnesoid X receptor (FXR) or G protein-coupled bile acid receptor (GPBAR1; TGR5) improves metabolic homeostasis. In this study, we aim to determine the impact of pharmacological activation of…

Output Formats

atom, dcmes-xml, json, omeka-xml, rss2