A New Bioartificial Pancreas Utilizing Amphiphilic Membranes For The Immunoisolation Of Porcine Islets A Pilot Study In The Canine

Title

A New Bioartificial Pancreas Utilizing Amphiphilic Membranes For The Immunoisolation Of Porcine Islets A Pilot Study In The Canine

Creator

Grundfest-Broniatowski S F; Tellioglu G; Rosenthal K S; Kang J; Erdodi G; Yalcin B; Cakmak M; Drazba J; Bennett A; Lu L; Kennedy J P

Publisher

Asaio Journal

Date

2009
2009-07

Description

We have developed a replaceable bioartificial pancreas to treat diabetes utilizing a unique cocontinous amphiphilic conetwork membrane created for macroencapsulation and immunoisolation of porcine islet cells (PICs). The membrane is assembled from hydrophilic poly(N,N-dimethyl acrylamide) and hydrophobic/oxyphilic polydimethylsiloxane chains crosslinked with hydrophobic/oxyphilic polymethylhydrosiloxane chains. Our hypothesis is that this membrane allows the survival of xenotransplanted PICs in the absence of prevascularization or immunosuppression because of its extraordinarily high-oxygen permeability and small hydrophilic channel dimensions (3-4 nm). The key components are a 5-10 mu m thick semipermeable amphiphilic conetwork membrane reinforced with an electrospun nanomat of polydimethylsiloxane-containing polyurethane, and a laser-perforated nitinol scaffold to provide geometric stability. Devices were loaded with PICs and tested for their ability to maintain islet viability without prevascularization, prevent rejection, and reverse hyperglycemia in three pancreatectomized dogs without immunosuppression. Tissue tolerance was good and there was no systemic toxicity. The bioartificial pancreas protected PICs from toxic environments in vitro and in vivo. Islets remained viable for up to 3 weeks without signs of rejection. Neovascularization was observed. Hyperglycemia was not reversed, most likely because of insufficient islet mass. Further studies to determine long-term islet viability and correction of hyperglycemia are warranted. ASAIO Journal 2009; 55:400-405.

Subject

biocompatibility; endothelial growth-factor; Engineering; mice; networks; oxygen-tension; pig islets; rat; survival; transplantation; transplantation; vascularization

Format

Journal Article or Conference Abstract Publication

Search for Full-text

Users with a NEOMED Library login can search for full-text journal articles at the following url: https://libraryguides.neomed.edu/home

Rights

Article information provided for research and reference use only. All rights are retained by the journal listed under publisher and/or the creator(s).

Pages

400-405

Issue

4

Volume

55

Citation

Grundfest-Broniatowski S F; Tellioglu G; Rosenthal K S; Kang J; Erdodi G; Yalcin B; Cakmak M; Drazba J; Bennett A; Lu L; Kennedy J P, “A New Bioartificial Pancreas Utilizing Amphiphilic Membranes For The Immunoisolation Of Porcine Islets A Pilot Study In The Canine,” NEOMED Bibliography Database, accessed April 19, 2024, https://neomed.omeka.net/items/show/10019.