A New Bioartificial Pancreas Utilizing Amphiphilic Membranes For The Immunoisolation Of Porcine Islets A Pilot Study In The Canine
Title
A New Bioartificial Pancreas Utilizing Amphiphilic Membranes For The Immunoisolation Of Porcine Islets A Pilot Study In The Canine
Creator
Grundfest-Broniatowski S F; Tellioglu G; Rosenthal K S; Kang J; Erdodi G; Yalcin B; Cakmak M; Drazba J; Bennett A; Lu L; Kennedy J P
Publisher
Asaio Journal
Date
2009
2009-07
Description
We have developed a replaceable bioartificial pancreas to treat diabetes utilizing a unique cocontinous amphiphilic conetwork membrane created for macroencapsulation and immunoisolation of porcine islet cells (PICs). The membrane is assembled from hydrophilic poly(N,N-dimethyl acrylamide) and hydrophobic/oxyphilic polydimethylsiloxane chains crosslinked with hydrophobic/oxyphilic polymethylhydrosiloxane chains. Our hypothesis is that this membrane allows the survival of xenotransplanted PICs in the absence of prevascularization or immunosuppression because of its extraordinarily high-oxygen permeability and small hydrophilic channel dimensions (3-4 nm). The key components are a 5-10 mu m thick semipermeable amphiphilic conetwork membrane reinforced with an electrospun nanomat of polydimethylsiloxane-containing polyurethane, and a laser-perforated nitinol scaffold to provide geometric stability. Devices were loaded with PICs and tested for their ability to maintain islet viability without prevascularization, prevent rejection, and reverse hyperglycemia in three pancreatectomized dogs without immunosuppression. Tissue tolerance was good and there was no systemic toxicity. The bioartificial pancreas protected PICs from toxic environments in vitro and in vivo. Islets remained viable for up to 3 weeks without signs of rejection. Neovascularization was observed. Hyperglycemia was not reversed, most likely because of insufficient islet mass. Further studies to determine long-term islet viability and correction of hyperglycemia are warranted. ASAIO Journal 2009; 55:400-405.
Subject
biocompatibility; endothelial growth-factor; Engineering; mice; networks; oxygen-tension; pig islets; rat; survival; transplantation; transplantation; vascularization
Identifier
Format
Journal Article or Conference Abstract Publication
URL Address
Search for Full-text
Users with a NEOMED Library login can search for full-text journal articles at the following url: https://libraryguides.neomed.edu/home
Rights
Article information provided for research and reference use only. All rights are retained by the journal listed under publisher and/or the creator(s).
Pages
400-405
Issue
4
Volume
55
Citation
Grundfest-Broniatowski S F; Tellioglu G; Rosenthal K S; Kang J; Erdodi G; Yalcin B; Cakmak M; Drazba J; Bennett A; Lu L; Kennedy J P, “A New Bioartificial Pancreas Utilizing Amphiphilic Membranes For The Immunoisolation Of Porcine Islets A Pilot Study In The Canine,” NEOMED Bibliography Database, accessed March 20, 2025, https://neomed.omeka.net/items/show/10019.