Comparative dental anatomy in newborn primates: Cusp mineralization
Title
Comparative dental anatomy in newborn primates: Cusp mineralization
Creator
Paddock Kelsey; Zeigler Larissa; Harvey Brianna; Prufrock Kristen A; Liptak Jordan M; Ficorilli Courtney M; Hogg Russell T; Bonar Christopher J; Evans Sian; Williams Lawrence; Vinyard Christopher J; DeLeon Valerie B; Smith Timothy D
Publisher
Anatomical Record (Hoboken, N.J.: 2007)
Date
2019
2019-12-04
Description
Previous descriptive work on deciduous dentition of primates has focused disproportionately on great apes and humans. To address this bias in the literature, we studied 131 subadult nonhominoid specimens (including 110 newborns) describing deciduous tooth morphology and assessing maximum hydroxyapatite density (MHD). All specimens were CT scanned at 70 kVp and reconstructed at 20.5-39 μm voxels. Grayscale intensity from scans was converted to hydroxyapatite (HA) density (mg HA/cm3 ) using a linear conversion of grayscale values to calibration standards of known HA density (R2 = .99). Using Amira software, mineralized dental tissues were captured by segmenting the tooth cusps first and then capturing the remainder of the teeth at descending thresholds of gray levels. We assessed the relationship of MHD of selected teeth to cranial length using Pearson correlation coefficients. In monkeys, anterior teeth are more mineralized than postcanine teeth. In tarsiers and most lemurs and lorises, postcanine teeth are the most highly mineralized. This suggests that monkeys have a more prolonged process of dental mineralization that begins with incisors and canines, while mineralization of postcanine teeth is delayed. This may in part be a result of relatively late weaning in most anthropoid primates. Results also reveal that in lemurs and lorises, MHD of the mandibular first permanent molar (M1 ) negatively correlates with cranial length. In contrast, the MHD of M1 positively correlates with cranial length in monkeys. This supports the hypothesis that natural selection acts independently on dental growth as opposed to mineralization and indicates clear phylogenetic differences among primates.
Subject
catarrhine; deciduous; dentition; platyrrhine
Format
Journal Article
URL Address
Search for Full-text
Users with a NEOMED Library login can search for full-text journal articles at the following url: https://libraryguides.neomed.edu/home
Rights
Article information provided for research and reference use only. All rights are retained by the journal listed under publisher and/or the creator(s).
ISSN
1932-8494
NEOMED College
NEOMED College of Medicine
NEOMED Department
Department of Anatomy & Neurobiology
Update Year & Number
January 2020 Update
Citation
Paddock Kelsey; Zeigler Larissa; Harvey Brianna; Prufrock Kristen A; Liptak Jordan M; Ficorilli Courtney M; Hogg Russell T; Bonar Christopher J; Evans Sian; Williams Lawrence; Vinyard Christopher J; DeLeon Valerie B; Smith Timothy D, “Comparative dental anatomy in newborn primates: Cusp mineralization,” NEOMED Bibliography Database, accessed April 18, 2025, https://neomed.omeka.net/items/show/10940.