Comparative dental anatomy in newborn primates: Cusp mineralization

Title

Comparative dental anatomy in newborn primates: Cusp mineralization

Creator

Paddock Kelsey; Zeigler Larissa; Harvey Brianna; Prufrock Kristen A; Liptak Jordan M; Ficorilli Courtney M; Hogg Russell T; Bonar Christopher J; Evans Sian; Williams Lawrence; Vinyard Christopher J; DeLeon Valerie B; Smith Timothy D

Publisher

Anatomical Record (Hoboken, N.J.: 2007)

Date

2019
2019-12-04

Description

Previous descriptive work on deciduous dentition of primates has focused disproportionately on great apes and humans. To address this bias in the literature, we studied 131 subadult nonhominoid specimens (including 110 newborns) describing deciduous tooth morphology and assessing maximum hydroxyapatite density (MHD). All specimens were CT scanned at 70 kVp and reconstructed at 20.5-39 μm voxels. Grayscale intensity from scans was converted to hydroxyapatite (HA) density (mg HA/cm3 ) using a linear conversion of grayscale values to calibration standards of known HA density (R2 = .99). Using Amira software, mineralized dental tissues were captured by segmenting the tooth cusps first and then capturing the remainder of the teeth at descending thresholds of gray levels. We assessed the relationship of MHD of selected teeth to cranial length using Pearson correlation coefficients. In monkeys, anterior teeth are more mineralized than postcanine teeth. In tarsiers and most lemurs and lorises, postcanine teeth are the most highly mineralized. This suggests that monkeys have a more prolonged process of dental mineralization that begins with incisors and canines, while mineralization of postcanine teeth is delayed. This may in part be a result of relatively late weaning in most anthropoid primates. Results also reveal that in lemurs and lorises, MHD of the mandibular first permanent molar (M1 ) negatively correlates with cranial length. In contrast, the MHD of M1 positively correlates with cranial length in monkeys. This supports the hypothesis that natural selection acts independently on dental growth as opposed to mineralization and indicates clear phylogenetic differences among primates.

Subject

catarrhine; deciduous; dentition; platyrrhine

Identifier

PMID: 31802627

Format

Journal Article

Search for Full-text

Users with a NEOMED Library login can search for full-text journal articles at the following url: https://libraryguides.neomed.edu/home

Rights

Article information provided for research and reference use only. All rights are retained by the journal listed under publisher and/or the creator(s).

ISSN

1932-8494

NEOMED College

NEOMED College of Medicine

NEOMED Department

Department of Anatomy & Neurobiology

Update Year & Number

January 2020 Update

Citation

Paddock Kelsey; Zeigler Larissa; Harvey Brianna; Prufrock Kristen A; Liptak Jordan M; Ficorilli Courtney M; Hogg Russell T; Bonar Christopher J; Evans Sian; Williams Lawrence; Vinyard Christopher J; DeLeon Valerie B; Smith Timothy D, “Comparative dental anatomy in newborn primates: Cusp mineralization,” NEOMED Bibliography Database, accessed April 19, 2024, https://neomed.omeka.net/items/show/10940.