DNA methylation predicts age and provides insight into exceptional longevity of bats.
Title
DNA methylation predicts age and provides insight into exceptional longevity of bats.
Creator
Wilkinson GS; Adams DM; Haghani A; Lu AT; Zoller J; Breeze CE; Arnold BD; Ball HC; Carter GG; Cooper LN; Dechmann DKN; Devanna P; Fasel NJ; Galazyuk AV; Günther L; Hurme E; Jones G; Knörnschild M; Lattenkamp EZ; Li CZ; Mayer F; Reinhardt JA; Medellin RA; Nagy M; Pope B; Power ML; Ransome RD; Teeling EC; Vernes Sonja C; Zamora-Mejías D; Zhang J; Faure PA; Greville LJ; Horvath S
Publisher
Nature Communications
Date
2021
2021-03-12
Description
Exceptionally long-lived species, including many bats, rarely show overt signs of aging, making it difficult to determine why species differ in lifespan. Here, we use DNA methylation (DNAm) profiles from 712 known-age bats, representing 26 species, to identify epigenetic changes associated with age and longevity. We demonstrate that DNAm accurately predicts chronological age. Across species, longevity is negatively associated with the rate of DNAm change at age-associated sites. Furthermore, analysis of several bat genomes reveals that hypermethylated age- and longevity-associated sites are disproportionately located in promoter regions of key transcription factors (TF) and enriched for histone and chromatin features associated with transcriptional regulation. Predicted TF binding site motifs and enrichment analyses indicate that age-related methylation change is influenced by developmental processes, while longevity-related DNAm change is associated with innate immunity or tumorigenesis genes, suggesting that bat longevity results from augmented immune response and cancer suppression.
Identifier
Format
Journal Article
URL Address
Volume
12
NEOMED College
NEOMED College of Medicine
NEOMED Department
Department of Anatomy & Neurobiology
Update Year & Number
Jan to Aug list 2021
Citation
Wilkinson GS; Adams DM; Haghani A; Lu AT; Zoller J; Breeze CE; Arnold BD; Ball HC; Carter GG; Cooper LN; Dechmann DKN; Devanna P; Fasel NJ; Galazyuk AV; Günther L; Hurme E; Jones G; Knörnschild M; Lattenkamp EZ; Li CZ; Mayer F; Reinhardt JA; Medellin RA; Nagy M; Pope B; Power ML; Ransome RD; Teeling EC; Vernes Sonja C; Zamora-Mejías D; Zhang J; Faure PA; Greville LJ; Horvath S, “DNA methylation predicts age and provides insight into exceptional longevity of bats.,” NEOMED Bibliography Database, accessed March 15, 2025, https://neomed.omeka.net/items/show/11829.