Coronary collateral growth–back to the future.


Coronary collateral growth–back to the future.


Chilian William M; Penn Marc S; Pung Yuh Fen; Dong Feng; Mayorga Maritza; Ohanyan Vahagn; Logan Suzanna; Yin Liya


Journal of molecular and cellular cardiology




The coronary collateral circulation is critically important as an adaptation of the heart to prevent the damage from ischemic insults. In their native state, collaterals in the heart would be classified as part of the microcirculation, existing as arterial-arterial anastomotic connections in the range of 30 to 100 muM in diameter. However, these vessels also show a propensity to remodel into components of the macrocirculation and can become arteries larger than 1000 muM in diameter. This process of outward remodeling is critically important in the adaptation of the heart to ischemia because the resistance to blood flow is inversely related to the fourth power of the diameter of the vessel. Thus, an expansion of a vessel from 100 to 1000 muM would reduce resistance (in this part of the circuit) to a negligible amount and enable delivery of flow to the region at risk. Our goal in this review is to highlight the voids in understanding this adaptation to ischemia-the growth of the coronary collateral circulation. In doing so we discuss the controversies and unknown aspects of the causal factors that stimulate growth of the collateral circulation, the role of genetics, and the role of endogenous stem and progenitor cells in the context of the normal, physiological situation and under more pathological conditions of ischemic heart disease or with some of the underlying risk factors, e.g., diabetes. The major conclusion of this review is that there are many gaps in our knowledge of coronary collateral growth and this knowledge is critical before the potential of stimulating collateralization in the hearts of patients can be realized. This article is part of a Special Issue entitled "Coronary Blood Flow".


Collateral Circulation/*physiology; Coronary Artery Disease/physiopathology/therapy; Coronary Circulation/physiology; Humans; Myocardial Ischemia/physiopathology/therapy; Neovascularization; Physiologic/physiology


Article information provided for research and reference use only. All rights are retained by the journal listed under publisher and/or the creator(s).








Chilian William M; Penn Marc S; Pung Yuh Fen; Dong Feng; Mayorga Maritza; Ohanyan Vahagn; Logan Suzanna; Yin Liya, “Coronary collateral growth–back to the future.,” NEOMED Bibliography Database, accessed December 4, 2023,