PPAR/RXR Regulation of Fatty Acid Metabolism and Fatty Acid omega-Hydroxylase (CYP4) Isozymes: Implications for Prevention of Lipotoxicity in Fatty Liver Disease.

Title

PPAR/RXR Regulation of Fatty Acid Metabolism and Fatty Acid omega-Hydroxylase (CYP4) Isozymes: Implications for Prevention of Lipotoxicity in Fatty Liver Disease.

Creator

Hardwick James P; Osei-Hyiaman Douglas; Wiland Homer; Abdelmegeed Mohamed A; Song Byoung-Joon

Publisher

PPAR research

Date

2009
1905-07

Description

Fatty liver disease is a common lipid metabolism disorder influenced by the combination of individual genetic makeup, drug exposure, and life-style choices that are frequently associated with metabolic syndrome, which encompasses obesity, dyslipidemia, hypertension, hypertriglyceridemia, and insulin resistant diabetes. Common to obesity related dyslipidemia is the excessive storage of hepatic fatty acids (steatosis), due to a decrease in mitochondria beta-oxidation with an increase in both peroxisomal beta-oxidation, and microsomal omega-oxidation of fatty acids through peroxisome proliferator activated receptors (PPARs). How steatosis increases PPARalpha activated gene expression of fatty acid transport proteins, peroxisomal and mitochondrial fatty acid beta-oxidation and omega-oxidation of fatty acids genes regardless of whether dietary fatty acids are polyunsaturated (PUFA), monounsaturated (MUFA), or saturated (SFA) may be determined by the interplay of PPARs and HNF4alpha with the fatty acid transport proteins L-FABP and ACBP. In hepatic steatosis and steatohepatitis, the omega-oxidation cytochrome P450 CYP4A gene expression is increased even with reduced hepatic levels of PPARalpha. Although numerous studies have suggested the role ethanol-inducible CYP2E1 in contributing to increased oxidative stress, Cyp2e1-null mice still develop steatohepatitis with a dramatic increase in CYP4A gene expression. This strongly implies that CYP4A fatty acid omega-hydroxylase P450s may play an important role in the development of steatohepatitis. In this review and tutorial, we briefly describe how fatty acids are partitioned by fatty acid transport proteins to either anabolic or catabolic pathways regulated by PPARs, and we explore how medium-chain fatty acid (MCFA) CYP4A and long-chain fatty acid (LCFA) CYP4Fomega-hydroxylase genes are regulated in fatty liver. We finally propose a hypothesis that increased CYP4A expression with a decrease in CYP4F genes may promote the progression of steatosis to steatohepatitis.

Identifier

Rights

Article information provided for research and reference use only. All rights are retained by the journal listed under publisher and/or the creator(s).

Pages

952734–952734

Volume

2009

Citation

Hardwick James P; Osei-Hyiaman Douglas; Wiland Homer; Abdelmegeed Mohamed A; Song Byoung-Joon, “PPAR/RXR Regulation of Fatty Acid Metabolism and Fatty Acid omega-Hydroxylase (CYP4) Isozymes: Implications for Prevention of Lipotoxicity in Fatty Liver Disease.,” NEOMED Bibliography Database, accessed April 19, 2024, https://neomed.omeka.net/items/show/4691.