NMDA receptors and voltage-dependent calcium channels mediate different aspects of acquisition and retention of a spatial memory task

Title

NMDA receptors and voltage-dependent calcium channels mediate different aspects of acquisition and retention of a spatial memory task

Creator

Woodside B L; Borroni A M; Hammonds M D; Teyler T J

Publisher

Neurobiology of Learning and Memory

Date

2004
2004-03

Description

Activity dependent calcium entry into neurons can initiate a form of synaptic plasticity called long-term potentiation (LTP). This phenomenon is considered by many to be one possible cellular mechanism underlying learning and memory. The calcium entry that induces this phenomenon can occur when N-methyl-D-aspartate receptors (NMDARs) and/or voltage-dependent calcium channels (VDCCs) are activated. While much is known about synaptic plasticity and the mechanisms that are triggered by activation of these two Ca2+ channels, it is unclear what roles they play in learning. To better understand the role activation of these channels may play in learning we systemically administered pharmacological antagonists to block NMDARs, VDCCs, or both during training trials and retention tests in a radial arm maze task. Wistar rats injected with the NMDAR antagonist MK-801 (0.1 mg/kg) were impaired in the acquisition of this task. In contrast, rats injected with verapamil (10 mg/kg), an antagonist to VDCCs, acquired the task at the same rate as control animals, but were impaired on a 10-day retention test. A group of animals injected with both antagonists were unable to learn the task. The results suggest that each of the calcium channels and the processes they trigger are involved in a different stage of memory formation or expression. (C) 2003 Elsevier Inc. All rights reserved.

Subject

2 forms; activation; anesthetized rats; antagonists cpp; area ca1; Behavioral Sciences; hippocampus; in-vivo; learning; long-term potentiation; ltp; ltp; Neurosciences & Neurology; nmdaLTP; Psychology; spatial; spatial memory; synaptic plasticity; vdccLTP

Format

Journal Article

Search for Full-text

Users with a NEOMED Library login can search for full-text journal articles at the following url: https://libraryguides.neomed.edu/home

Rights

Article information provided for research and reference use only. All rights are retained by the journal listed under publisher and/or the creator(s).

Pages

105-114

Issue

2

Volume

81

Citation

Woodside B L; Borroni A M; Hammonds M D; Teyler T J, “NMDA receptors and voltage-dependent calcium channels mediate different aspects of acquisition and retention of a spatial memory task,” NEOMED Bibliography Database, accessed March 28, 2024, https://neomed.omeka.net/items/show/7617.