Study On Spectral Parameters And The Support Vector Machine In Surface Enhanced Raman Spectroscopy Of Serum For The Detection Of Colon Cancer

Title

Study On Spectral Parameters And The Support Vector Machine In Surface Enhanced Raman Spectroscopy Of Serum For The Detection Of Colon Cancer

Creator

Li X Z; Yang T Y; Li S Q; Yao J; Song Y T; Wang D L; Ding J H

Publisher

Laser Physics Letters

Date

2015
2015-11

Description

Surface enhanced Raman spectroscopy (SERS) has been recognized as an effective tool for the analysis of tissue samples and biofluids. In this work, a total of 27 spectral parameters were chosen and compared using SERS. Four parameters with the highest prediction ability were selected for further support vector machine (SVM) analysis. As a comparison, principal component analysis (PCA) was used on the same dataset for feature extraction. SVM was used with the above two data reduction methods separately to differentiate colon cancer and the control groups. Serum taken from 52 colon cancer patients and 60 healthy volunteers were collected and tested by SERS. The accuracy for Parameter-SVM was 95.0%, the sensitivity was 96.2%, and the specificity was 95.5%, which was much higher than the results using only one parameter, while for PCA-SVM, the results are 93.3%, 92.3%, and 92.9%, respectively. These results demonstrate that the SERS analysis method can be used to identify serum differences between colon cancer patients and normal people.

Subject

colon cancer; colorectal-cancer; discrimination; Optics; parameters; Physics; scattering sers; support; surface enhanced Raman spectroscopy; tumors; vector machine

Format

Journal Article or Conference Abstract Publication

Search for Full-text

Users with a NEOMED Library login can search for full-text journal articles at the following url: https://libraryguides.neomed.edu/home

Rights

Article information provided for research and reference use only. All rights are retained by the journal listed under publisher and/or the creator(s).

Pages

11-11

Issue

11

Volume

12

Citation

Li X Z; Yang T Y; Li S Q; Yao J; Song Y T; Wang D L; Ding J H, “Study On Spectral Parameters And The Support Vector Machine In Surface Enhanced Raman Spectroscopy Of Serum For The Detection Of Colon Cancer,” NEOMED Bibliography Database, accessed January 20, 2021, https://neomed.omeka.net/items/show/10745.

Social Bookmarking