Activation of farnesoid X receptor (Fxr, Nr1h4) is a major mechanism in suppressing bile-acid synthesis by reducing the expression levels of genes encoding key bile-acid synthetic enzymes (e.g., cytochrome P450 [CYP]7A1/Cyp7a1 and CYP8B1/Cyp8b1).…
Cholesterol 7alpha-hydroxylase, the rate-determining enzyme in the bile acid biosynthesis pathway, is regulated in a negative feedback manner by hydrophobic bile salts returning to the liver via the portal circulation. The role of cholesterol in the…
Cholesterol 7-alpha-hydroxylase catalyzes the rate-limiting step in the bile acid biosynthetic pathway. Regulation of this pathway is thought to occur solely as a result of a negative feedback control mechanism that is dependent upon the flux and…
Taurocholate, a relatively hydrophobic bile salt, is a potent down-regulator of HMG-CoA reductase and cholesterol 7-alpha-hydroxylase (C7-alpha-H), the rate-determining enzymes of the cholesterol and bile acid biosynthetic pathways, respectively.…
The sterol 12alpha-hydroxylase (CYP8B1) is a key enzyme of the bile acid biosynthetic pathway. It regulates the composition of bile acids in bile, i.e. ratio between cholic acid (CA) and chenodeoxycholic acid (CDCA). In similarity with cholesterol…
The present study examines the feedback control governing human cholesterol 7 alpha-hydroxylase mRNA expression in the human hepatoblastoma cell line, Hep G2. Glycochenodeoxycholate (GCDC) and glycodeoxycholate, hydrophobic bile salts, decreased…
Cholesterol 7alpha-hydroxylase, the rate-limiting enzyme in the bile acid synthesis pathway, is down-regulated by taurocholate by way of negative feedback control at the level of gene transcription. The molecular basis of regulation of cholesterol…
The controlled and selective synthesis/clearance of biomolecules is critical for most cellular processes. In most high-throughput 'omics' studies, we measure the static quantities of only one class of biomolecules (e.g. DNA, mRNA, proteins or…